25 research outputs found

    Compact-Size Wideband Antennas and Arrays for Wireless Communications

    Get PDF
    Polarization is an important parameter for characterizing antenna systems. Dual-polarized and circularly-polarized wideband antennas with compact size are very useful for mobile communications and satellite communications. Due to the multipath propagation and shadowing in urban environment, radio signals received by mobile terminals can become very weak. Dual-polarized antennas can achieve better signal quality in mobile communications by using polarization diversity. Wideband circularly polarized antennas are very important for mobile satellite communications as circularly polarized signals are immune to Faraday rotation effects. Circular polarization also enables mobile satellite communications without strict alignment between transmit and receive antennas. Therefore, dual-polarized antennas and circularly polarized antennas have been drawn increasing popularity in the wireless communication systems. In this thesis, several novel designs of compact, wideband, and specially functioned antennas and arrays are developed for wireless communication applications. First, wideband antennas and arrays are investigated for base station applications with different appealing features, such as compact radiator size, enhanced upper out-of-band suppression, or low pattern sidelobes. They are designed with different novel design concept, such as shared-dipole, electromagnetic dipoles, shorted dipoles, and fourth-order coupling structure. Then, to directly match to the newly emerged differential circuit systems, several wideband differentially fed dual-polarized antennas are proposed for base station applications. They are designed for high common mode suppression, high harmonic suppression, or compact radiator size by using the idea of orthogonal six-port power divider, multi-resonance structure, and crossed open loop resonators. The final designs are two circularly polarized antennas, which have the wide overlapped impedance and axial ratio bandwidth, or dual circularly polarized radiations realized by using crossed open slot-pairs, orthogonal power diver, and phase shift unit cells. The working principles of these different antennas are extensively illustrated with the relevant design theories and detailed structure studies. The performances of these antennas and arrays are evaluated first by the full-wave electromagnetics simulations, and followed by the measurements of the corresponding fabricated prototypes. Good agreements between the simulated and measured results are obtained. With these different features to accommodate different requirements, these antennas and arrays can be the good candidates for the wireless communication systems

    Wideband Dual Circularly Polarized Antenna for Intelligent Transport Systems

    Get PDF
    A wideband dual circularly polarized (DCP) antenna is presented for intelligent transport system (ITS) applications, which can be used to improve the receiver sensitivity and communication quality of ITS. The presented DCP antenna is composed of an orthogonal power divider (OPD) with two orthogonal input ports, four phase shifters for quadrature phase output, and four crossed dipoles for DCP radiation. Detailed equivalent circuit analysis shows that the OPD has two orthogonal inputs and four equal magnitude in-phase and out-of-phase outputs. To achieve two sets of orthogonal quadrature output signals for DCP radiation, the lumped element based differential right-hand transmission line unit cell and left-hand transmission line unit cell are elaborately introduced as the ±45° phase shifters, and incorporated into the OPD. Eventually, orthogonal quadrature signals are successfully obtained and fed to the crossed dipoles for DCP radiation. The proposed antenna was then designed, fabricated, and measured for ITS applications. The measured results show that the overlapped impedance bandwidth of both two input ports is 1.07–1.85 GHz (53.4%), and the isolation is higher than 15.2 dB. Moreover, low axial ratio (<1.7 dB) and symmetrical radiation patterns are achieved for unidirectional DCP radiation

    Spoof Surface Plasmon Polaritons Based Antenna and Array by Exciting both Even and Odd Mode Resonances

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.1109/TAP.2023.3335840Spoof surface plasmon polaritons (SSPPs) based antenna and array by exciting both even and odd mode resonances are developed and investigated in this paper. Different from others’ work and for the first time, we use the separated corrugated grooves to achieve the consistent fundamental even and odd mode resonances on the same SSPPs aperture. In this way, the even and odd mode resonances can be operated in the same frequency band. Also for the first time, we introduce the SSPPs into an orthogonal-mode resonated antenna pursuing high isolated radiation. New challenges including the feed methods and impedance matching of two different resonant modes are overcome by introducing the capacitive patch and triangular cuts on the SSPPs. Finally, the SSPPs antenna and array were tested for performance investigation. It is found that in addition to the obtained wide overlapped impedance bandwidth of 14.8%, a very high isolation of 29 dB is achieved in the developed compact antenna element. The couplings between other antenna elements, radiation patterns, gains, and efficiencies of the array are also investigated. Both the measured and simulated results show that SSPPs and the developed antenna can be very appealing in MIMO applications owing to their orthogonal even-odd modes and compact structures.Peer reviewe

    Wideband Back-Cover Antenna Design Using Dual Characteristic Modes With High Isolation for 5G MIMO Smartphone

    Get PDF
    © 2022 IEEE - All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TAP.2022.3145456A novel method of designing a wideband high isolated dual-antenna pair using dual characteristic modes (CMs)is presented for fifth-generation (5G) multiple-input multiple output (MIMO) smartphone applications. A set of orthogonal CMs resonating from the square-loop slot is first introduced and works for the lower band. Then, another set of orthogonal CMs resonating from the edge branches is introduced with a shared compact radiator and works for the higher band. In combination with two sets of degenerated CMs and a capacitive coupling feeding structure, the proposed dual-antenna pair achieves abroad impedance bandwidth and high isolation without the need for any external decoupling structures. Based on this dual-antenna pair, an 8×8 MIMO array is developed and integrated into the back cover of a smartphone, which realizes zero ground clearance on the system circuit board. To verify the design concept, prototypes of the antenna pair and MIMO array were fabricated and measured. It shows that experimental results agree well with the simulation results. More importantly, the presented 8×8 MIMO array has high isolation of more than 20 dBis achieved across the operating band of 3.3-3.8 GHz.Peer reviewedFinal Accepted Versio

    Wideband Circularly Polarized Reflectarray Antenna Using Rotational Symmetrical Crossed Dipoles

    Get PDF
    © 2023 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TAP.2023.3247943A wideband circularly polarized (CP) reflectarray (RA) antenna using rotational symmetrical crossed dipoles is presented. This is the first time investigating coupled crossed dipoles as the unit cell for wideband reflection bandwidth in the CP RA design. Equivalent circuit analysis shows that when a CP wave impinges on the designed unit cell, two series resonances, and two parallel resonances are simultaneously excited on the crossed dipoles. Owing to these four different resonances, the CP reflection bandwidth is greatly improved and elaborately adjusted by controlling the coupling between the crossed dipoles. The CP reflection bandwidth ratio of the unit cell is enhanced up to 2:1 for Sx<−15S_{x} < -15 dB with a thin thickness of 0.12λ00.12 \lambda {0}. Based on this unit cell, a wideband -20° collimated CP RA antenna with a circular aperture of 316 unit cells was designed, fabricated, and measured for final performance verification. The measured results show that a wide CP bandwidth of 7.6-15.9 GHz is achieved with the axial ratio (AR) < 3 dB. In addition, the measured 3 dB gain bandwidth is better than 43.7% with a peak realized gain of 26.3 dBic and maximum aperture efficiency (AE) of 58.3%.Peer reviewe

    Wideband Differentially-Fed Slot Antenna and Array With Circularly Polarized Radiation for Millimeter-Wave Applications

    Get PDF
    © 2022 IEEE - All rights reserved. This is the accepted manuscript version of the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TAP.2022.3145481A wideband differentially-fed slot antenna is presented for millimeter-wave (mmWave) applications. A novel method of using stepped corner-shaped slot is first utilized to establish the wideband circularly polarized (CP) radiation. In the configuration of corner-shaped slot, two wide open slots at the ends are utilized for effective orthogonal radiation, while the narrow slot at the center is utilized for power transmission and quadrature phase delay. An equivalent circuit is given to illustrate the inner working principle for CP radiation. In addition, square cuts are etched on the four corners of the radiating patches to further increase the axial ratio (AR) and impedance bandwidth. Based on this design concept, the antenna element was first designed and fabricated for performance verification. Then, a 1×4 linear array with beam scanning performance and a 4×4 planar array with high gain and stable radiation were designed and fabricated. Both the simulated and measured results show that the 1×4 linear array and 4×4 planar array can have wide overlapped impedance and AR bandwidths of 30.6% and 33.6% with thickness of 0.16λ0. The advantages of compact size and wide bandwidth make the presented antenna a good candidate for mmWave applications.Peer reviewedFinal Accepted Versio

    A Wideband Triple-Mode Differentially-Fed Microstrip Patch Antenna

    Get PDF
    © 2021 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://dx.doi.org/10.1109/LAWP.2021.3074302A wideband differentially-fed microstrip patch antenna (MPA) with tripe-resonant modes is presented in this letter. The proposed triple-mode MPA is realized by combining two dual-mode MPAs (MPA-I and MPA-II) with different resonant frequency ratios. Firstly, the TM0,1 mode and TM0,1/2 mode of dual-mode MPA-I can be concurrently excited by adding a pair of coupling shorted patches beside the strip MPA. The ratio of f0,1/2/f0,1 can be easily adjusted by moving the shorting pins between the strip MPA and shorted patches. Secondly, by properly designing the dimensions of a conventional MPA, the TM0,1 and TM2,1 modes of dual-mode MPA-II are simultaneously excited. To further reduce the ratio of f2,1/f0,1, four slots are elaborately etched on the conventional MPA. Finally, by combining the two dual-mode MPAs, a triple-mode MPA with the frequency ratio of f0,1/2:f2,1:f0,1 = 1.2:1.1:1 is realized. To verify the design concept, a prototype of triple-mode MPA was fabricated and measured. Experimental results show that the proposed microstrip antenna achieves a wide bandwidth of 26.5%, a low cross-polarization of -23 dB, and high harmonic suppression.Peer reviewe

    Millimetre-Wave Dual-Polarized Differentially-Fed 2D Multibeam Patch Antenna Array

    Get PDF
    In this paper, a novel millimetre-wave dual-polarized 2D multibeam antenna array incorporating differentially-fed antenna elements is proposed to achieve high cross-polarization discrimination (XPD) when the beams scan to the maximal pointing angles. The antenna element is composed of a SIW cavity with four shorted patches placed inside, and it is differentially excited for dual-polarization by a pair of feeding strips and transverse slots beneath the patches. Differential excitation is realized by a power divider designed on two laminate layers. Two Butler Matrices placed perpendicularly with each other in different laminates are employed to generate four tilted beams with dual-polarization. A 2 × 2 dual-polarized 2D multibeam antenna array working at 28 GHz is designed, fabricated, and measured. The operation bandwidth of the antenna is 26.8 GHz – 29.2 GHz. The improvement in the XPD is experimentally demonstrated by far-field measurement. When the beams scan to 30◦ off the boresight, the measured XPDs are 28 dB at the centre frequency and higher than 25 dB over the operation bandwidth, which confirms that the cross-polarized radiation in the 2D multibeam antenna array is suppressed by using the differential-feeding technique. The measured gain is in the range from 7.6 dBi to 10.5 dBi

    A Dual-Polarized Planar Antenna Array Differentially-Fed by Orthomode Transducer

    Get PDF
    This paper presents a new design of a differentially-fed substrate integrated planar antenna array with dual-polarization. Compared with the traditional dual-polarized antenna arrays, the proposed array antenna has the advantages of simple configuration, high cross-polarization discrimination (XPD) and high gain. 2×2-element subarray design with a vialoaded crossover structure is used, which reduces the complexity of the array antenna. The operation bandwidth is improved by generating three resonances in the subarray. One 8×8 antenna array is designed, prototyped and tested to exemplify its potential applications in large dual-polarized antenna arrays. A planar orthomode transducer is used to achieve differential excitation for the antenna array. The measured results show that the proposed antenna array has an impedance bandwidth of 19.2–20.7 GHz for |S11| < −10 dB and port isolation higher than 20 dB. The array antenna exhibits a high XPD of 43 dB and a flat gain about 22.2 dBi within the bandwidth

    Design of a Wideband Dual-Feed Circularly Polarized Antenna for Different Axial Ratio Requirements

    Get PDF
    A novel method of designing a wideband dual-feed circularly polarized (CP) antenna is presented for different axial ratio (AR) requirements. The output characteristics of the feed network for the dual-feed CP antenna is first analyzed and illustrated that how to obtain the variance ranges of the output magnitude and phase of the feed network for a required AR. Based on the analysis, different branch-line couplers are used for achieving wide AR bandwidths of less than 3 dB, 2 dB, and 1 dB respectively. Compared to the traditionally used 3 dB coupler, the presented feed method can have an AR peak with the expected value at the center frequency and two AR valleys beside the peak, while the traditional 3 dB coupler can only get an AR valley with narrower bandwidth. Therefore, much wider AR bandwidths for different AR requirements are obtained by using the presented method. The wideband dual-feed antenna fed by these different couplers was also simulated, fabricated, and measured for the final performance verification
    corecore